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FOREWORD

This report presents an investigation of two topics related to mitigating the effects of radar
bias in tracking applications including ballistic tracking. We determine the absolute bias between
two radars in polar coordinates when their relative bias is given in rectangular coordinates. Using
this result, the optimized steady-state filter to handle the unknown deterministic bias is then
obtained.

An earlier version of this report was published at the 2008 National Fire Control Symposium,
Lexington, Massachusetts.
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NOMENCLATURE

Measurement at k, q—dimensional,

Process noise at k, n-dimensional,

Measurement noise at k, g-dimensional,

State transition matrix from & to [, n by n-dimensional, 3 12
Noise input matrix at k, n by b-dimensional, 3-1

Output matrix at k, ¢ by n-dimensional, 3-1

Process noise intensity at k, n by n-dimensional, 3-1
Measurement noise intensity at k, ¢ by ¢-dimensional, 3-1
Bias, p-dimensional, (3-2)

Mean and covariance of A, 3-1

Bias function, " x R to R", (3-2)

Bias matrix, ¢, r-dimensional, (3-2)

Total error, (3-5)

Error due to noise, (3-18)

Error due to bias, (3-19)

Total error covariances, 3-5

M covariances, (2-20) and (3-21)

Kalman filter gain matrix, n by g-dimensional,

(3-4) and (3-34)

Steady state position and velocity Kalman filter gains, (3-49)
Target maneuver index, 3-22

!Indicates equation number.

*Indicates page number.
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1 INTRODUCTION

There are several facets to the problem of tracking missiles that engage in deterministic
maneuvers with radar. Deterministic maneuvers can be accounted for with bias estimation
techniques that enable enhanced error correction to be applied to tracking algorithms, which
leads to more effectively tracked threats. In this report, we obtain the exact form of the bias
error for the coordinate transformation problem. This result is useful in Ballistic Missile
Defense bistatic applications where one sensor is used for launching an interceptor, while
another is used to track the threat. Thus, it is important to address the problem of
translation between internal sensor coordinate frames to a common frame that is used by all
sensors. The coordinate transformation problem from Cartesian to spherical coordinates
introduces a bias that, if accounted for, can be corrected in the filter design. This
transformation problem occurs when there are multiple launch platforms, as each local track
must be formatted for a common reference frame. When bias correction is accomplished
correctly, one can improve the tracking performance of the filter and increase the likelihood
that an interceptor can successfully engage a threat.

The results presented in this report are original and are due to the authors. An earlier
version of this report appeared in [10], which is also archived in www.arXiv.org.

1-1
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2 AN OPTIMIZED METHOD OF OBTAINING ABSOLUTE BIAS

Although a relative bias calculation can be used to provide the correct association of
tracks from two sensors, calculation of the absolute bias is required to correct the track state
and is needed for both track fusion and producing a Single Integrated Air Picture. Levedahl
[4] and Brown, Weisman, and Brock [5] present methods for obtaining the relative bias
between two radars tracking the same ballistic missile, which include maximizing a likelihood
function. The relative biases obtained in these papers are determined in rectangular
coordinates. In this report, the absolute bias for the two sensors is calculated from the
relative bias by solving a minimization problem. The absolute biases of the two sensors are
given in spherical coordinates. The problem is set up to minimize the weighted sum of the two
absolute biases while viewing the given relative bias as a constraint.

A point in three-dimensional space in both rectangular and spherical coordinates! is
denoted by

x r
P=1|vy | and T =] ¢ |, respectively. (2-1)
z 0

The transformations between the coordinates are ' = f(7) and © = f~(7), which are
given by

r cos 0 cos 1 Va?+y? + 22

f(7T) = | rcosfsiny | and f~1(P) = arctan (y/x) . (2-2)

rsin 6 arctan (z/\/as2 + y2)

We need the following definitions:

P Target position as seen by sensor 1
P Target position as seen by sensor 2
Pr True target position (unknown)

By Sensor 1 bias

By Sensor 2 bias

Bgr Relative bias

Pi7o2 | Sensor 2 position from sensor 1

Let ENU denote the East North Up coordinate system. We have
Py pnuay = (ml’yhzl);ENU(l)’ Py Env(e) = ($2’y2’z2)§5NU(2)’
Bienu() = (Az1, Ayr, Az1) gy and Ba pyu(e) = (Az2, Ayz, Az) (). Thus, in the
sensor coordinates

Prenva) = PLenva) + Brevva) (2-3)

Prenve) = P2enve) + B2 Enu() - (2-4)

"Denote yaw (azimuth) by 1, pitch (elevation) by 6. ¢ is normally reserved for roll; however, roll is not used
here.

2-1
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If we use an ENU coordinate system located at sensor 1, (2-4) becomes?

Pr env) = Piroz,env) + Pe.env) + Beenu) (2-5)

where P70z pnu(1) is the position vector from the first sensor to the second sensor in
ENU(1). The relative bias in ENU(1) is

Br.env) = B2,envu) — Brenu@)

= (Pr.enva) — Piroz,envay — Poenu)) — (Presva) — PrLevva))
= P1 pnu) — Piroz,enva) — P2.ENUQ) - (2-6)

We consider the coordinate transformations to allow us to go from ENU to radar-face
coordinates for a particular sensor. Each sensor has its own face and ENU coordinate
systems. A sensor’s face coordinate system (FACE) is related to the ENU coordinate system
of a sensor by the following transformation:

cos; 0 sinb; cosvy,; siny; 0
TENU()2FACE() = 0 I 0 —siney; cosy; 0
—sinf; 0 cos#b; 0 0 1
cos 0; cos v, cosf;siny,; sinb;
= — sin1; cos v, 0 (2-7)
—sinf; costy; —sinf;siny,; cosb;
where ¢ = 1,2. We also have that
cosf;costy; —sinty, —sinb;cosy,
Trace@pzeNvG) = | cosbisiny, costy;  —sinb;siny; | | (2-8)
sin 6; 0 cos0;

which is the transpose of (2-7). We can also have the matrix TNy ()2racE(j), Which is

cos; jcosyy, ;  cosb;jsing, i sinb;;

TENUG)2FACE() = —siny; ; cos ¥ ; 0 : (2-9)
—sin 6; j cos dJm —sin6; ;sin T,Z)i’j cos 0; ;

The absolute, as opposed to relative, bias can be expressed in the FACE coordinates:
Bi pacr@) = Ar - + Aca - Uea + Acp - Ucp (2-10)

where u, is the unit vector in the range coordinate and Ueh, Uep are the two cross range
coordinate unit vectors. Substituting prAy = Acy and prA0 = Acpg where pp; = || Pr(7)]|
(see note?), the distance from the sensor to the target, we get

Bi pacEG) = ATi - Uy + prildy; - Ued + pril\b; - Uep (2-11)

? Appendix A gives the transformation from ENU(1) to ENU(2).
3True position is not available; therefore, measured position is used when applying this method to this
calculation.

2-2
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cosf;cost; —sinty, —sinb;cos,; Ar;
Bi pnvu@y = | cosbtising; cosy;  —sinf;siny; priAY;
sin 6, 0 cos 0; priAO;

Arjcosb; cosh; — Ay (sine;) - pri — Ab; (sinb; cos ;) - pry
= | Arjcost;siny; + Ay (cosv;) - pri — AG; (sinb;sinv;) - pri | (2-12)
Ar;sin@; + Ab; (cos ;) - pri

We can obviously obtain B; pnu () (for i not necessarily equal to j) if needed. The quantities
Ary, Ay, Ay, Arg, Athy, Ay are minimized. When referring to these terms as a group we
write e = (Ary, Ay, Aby, Arg, Arhy, Abs).

We need tolerances or costs for the sensor biases. These costs are expressed in spherical
coordinates.

kr1 | Sensor 1 range bias cost, unitless

kro | Sensor 2 range bias cost, unitless

ky1 | Sensor 1 azimuth bias cost, meters

kyo | Sensor 2 azimuth bias cost, meters

kg1 | Sensor 1 elevation bias cost, meters

koo | Sensor 2 elevation bias cost, meters

Problem Statement

We want to compute the minimum (absolute) bias cost for the two sensors when there are
known (computed) expressions for the relative bias. The given relative bias is expressed in
ENU rectangular coordinates. We compute the minimum absolute bias in spherical
coordinates. The relative bias in rectangular coordinates contrasted with the absolute bias in
spherical coordinates allows us to formulate this as a minimization problem. We view the
relative bias as a constraint. We use a quadratic cost:

k72‘1 2 k?h 2 k31 2 k’?‘g 2 kiQ 2 kgz 2
So that the addition in (2-13) is permissible, we have that k., and k., are unitless and ky, ,

kg,, ky.,, and kg, are in meters. We note F' may be rewritten in the form

1

2/k%, 0 0 7 [ An
F=[Ary Ay, A6y ]| 0 2/k, 0 A,
0 0 2/kg, Ab,
2k, 0 0 1 [ Ar
+ [ Ary Aty A6 | 0 2/k} 0 Ay | (2-14)
0 0 2/kj, Aby

which we recognize as being in the form of a Mahalanobis distance. The works by Levedahl [4]
and the Lincoln Laboratory [5] include the Mahalanobis distance when the log is taken of the
Gaussian distribution. The cost F' is minimized subject to the equality constraint

G(B) = (B2,ENU(1) - B1,ENU(1)) — Brenvua) =0 (2-15)

2-3



NSWCDD/TR-12/555

Thus,

Arg cos O3 cos 10y — Athy (sin1hy) - pra — Abs (sin Oy cos 1y) - pro
G(B) = | Arycosfysiniy + Athy (costhsy) - pra — Aby (sin O3 sin1)y) - pro
Argsin Oy + Abs (COS 92) - P12

Ary cosfycosp; — Ay (sinty) - pr1 — Ay (sinby cosy) - pry
— | Arycosfysinty + Ay (cospy) - pr1 — Aby (sinbysiney) -pr1 | — Br=0 (2-16)
Arysin @y + Afy (cosby) - pri

where all the terms in (2-16) reside entirely in one of the two ENU coordinate systems. We
see that G(B) gives that the difference between the two absolute biases, whatever they may
be, is equal to the relative bias. Also, note that (2-16) is affine. Another equivalent
representation for G(B) is

Arg Ary
G(B) = A(pr2,v¥9,02) | AYy | — A(pr1,91,01) | Ay | — Br (2-17)
Abs A4
where
cosficosy; —sinyy-pr1 —sinbycosyy - pr1
A(pr1,1,01) = | cosbising; costpy-pr1 —sinfisinyy - pry (2-18)
sin 61 0 cosf1 - pr1
and

cosflacosty —siny - pra  —sinfs cosy - Pro
A(pra;thy,02) = | cosbasingy costpy-pre  —sinbasinty -pra | . (2-19)
sin 64 0 cosfs - pro

Setting G(B) = 0, we solve for Ary, Ay, Afs using

AT‘Q ATl
Atpy | = A7  (pr2.aby. 02) | A(pri,vy,01) | Avy | + Bg (2-20)
YA\ A6

(provided pra2 # 0). The vector equality constraint (2-16) can be written in the form of three
scalar equality constraints.

GE(B) = Argcosfy cos 1y — Athy sinihy - pra — Afg sin 03 cos 1)y - pra

—Ary cos 1 cospy + Ay sinyy - pr1 + Ay sin by cos, - pr1 — Bre (2-21)
GN(B) = Argcos s sin )y + Athy cos by - pro — Ay sin Oa sin by - pro

—Ary cosfysinyy; — Ay cosy - pr1 + Abysiny siny - pr1 — Bry , and (2-22)

Gy (B) = Argsinfy + Afy cosfy - pro — Arysinf; — Aby cos by - pr1 — Bru - (2-23)

2-4
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Solving the Minimization Problem

To solve this minimization problem, we need to take a few derivatives. We need the
gradient of the function that is minimized. We also need the gradient of the constraint, which
is an equality constraint in this case.

[ OF/OAr] k2, - Ary
OF /A, k7 - Ay
| OF/0A0, | k3 - A0y
VE=1 orjoam | = | k2 Ar (2-24)
OF/0AY, k%z WA
| OF/0Afy | i k92 - Afy ]
[ 0Gp/0Ar | — cos 61 cos 1y
0GE/0AY, siny - pr1
| 0Gg/oA6, | sin 01 cos vy - pr1
VG = OGgr/0Ary | cos 0 cos 1, (2-25)
0GE/0AY, —sinqy - pro
| 0GE/0A0, | | —sinfycosty - pro |
[ OGN /OAT] | —cosfysiny; ]
OGN [OAY, —cosvy - pr1
| 0GNn/OAGy | sin 0y sin )y - pr1
VGy = OGN /OATy | cos B sin 1), (2-26)
OG N [OAY, cos vy - P12
| OGN /OAD, | | —sinfysinty - pro |
[ 8GU/8AT1 1 —sin 91
OGy J0AY, 0
| 0Gy /oAby | | —pr1-cosby
VOU =1 agy/anr, | T in B : (2-27)
OGy |0AY, 0
L 8Gu/8A92 | | P72 - COS 92

We are looking for an optimal solution located at the point

e* = (Arf, Ay, A0T, Ars, Ay, AG5). We employ the Kuhn-Tucker conditions that stipulate
the optimal solution e* should satisfy these equality constraints for e, and there exist numbers
aj,as,as such that

VF (e*)=a] -VGg(e*) + a5 - VGy (e*) + a3 - VGy () . (2-28)

The gradients VGg (e*), VG (e*), VG (€*) are linearly independent. Taking an inventory
of the equations and unknowns, we see that there are nine unknowns (e, a1, ag, a3) and nine
equations [three from the equality constraint and six from (2-28)]. We may be able to find the
solution. Since the cost F'is quadratic and the constraint G is affine, the necessary conditions
we give for optimality are also sufficient conditions, and an optimal solution e¢* is a global
optimal solution.

2-5
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Equation (2-28) in longhand is:

. ATl
Ay,
- Afy
. ATQ
- Aty
WA

— cos 6 cos
siny - pr1
sin 01 cos ¥ - pr1
cos 02 cos 1y
—siney - pro
| —sinfycos )y - pro

=a + a2

—sin 91
0
—pp1 - cos B
sin 92
0
| pr2-cosfy

+a3

—cos 67 sin ¢,
—cosy - pr1
sin 01 sin vy - pr1
cos 03 sin 1,
oS Py - P2

—sinfysiny - pr1 |

(2-29)

The right hand side of (2-29) may be written in the form of the product of two matrices, M;

and M.

— cos 6 cos
sinyy - pr1
sin 01 cos Yy - pr1
cos 02 cos Y,
—sinyy - pro
| —sinfacosy - pra

where

My =

and

M, =

—sin 02 cos ¥4 - P71

—cos 6 sin ¢, —sin 64
—cos Yy - pr1 0
sinfysinyy - pr1 —pr1 - cos b
cos O3 sin ¥, sin 6o
coS Yy - P12 0
—sinfasiny - pra pra - cos by

—cos f cos Yy
siny - pr1
sin 01 cos ¥y - pr1

— cos 01 sin
—CosYy - pr

cos 03 cos ¥,
— sin ¢2 - Pr1

cos 02 sin ¥,
COS Py + Par

Note that a1, as, and a3 have the units of meters. Let

K20 0
Di=| 0 kj 0
0 0 kj
k2, 0 0
Dy=| 0 k3 0
0 0 kg

2-6

sin 0y siny - pr

al Ml al
a a
2 Mo 2
as as
—sin 64
0
—pr1 - cos O
sin 92
0

—sinfasinyy - par  pra2 - cos o

, (2-30)

(2-31)

(2-32)

(2-33)

(2-34)
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Rewriting the left hand side of (2-29) as

k2, 0 0 0 0 0 |1 AT [ Ary ]
0 k 0 0 0 0 XU Aty
0 0 k5 0 0 0 Aby | [ D1 033 A6y
0 0 0 k4, 0 O Arg | | 033 Dy Ary
0O 0 0 O k:f/)2 0 Ahy AT
0 0 0 0 0 kj | LA L Afy |
M| ™
_ [MJ [az] , (2-35)
as
we have ) ) ) )
A'I’l al
Dy | AYy | =My | a2 |, (2-36)
L A01 i | a3 |
i A’I"Q i i aj i
DQ Awg = MQ as s (2—37)
L AHQ i L as i
or,
i AT‘Q A’l‘l
Ay | = Dy MoMIDy | Ay | . (2-38)
| Abs Aby
Substituting (2-38) into (2-20) yields
Arl i A’I“l
D2_1M2M1_1D1 A¢1 = A_l (PT2>¢27 02) A (PT1>¢17 91) AQM + BR ; (2_39)
Afy ] Abq
S0 we get
AT‘l
(D3 ' MoM{'Dy — A™Y (pro, 9, 02) A (pr1,¥1,61)) | Ay | = A (pro, e, 02) Br (2-40)
Abq
A’l‘l 1
Ay | = (Dy ' MaM{ Dy — A7 (pro, g, 02) A (pr1,701,01))~ A7 (pr2, 49, 02) Br
Aby

(2-41)
which allows us to obtain (Ary, Ay, Afy). Finally, substituting (2-41) into (2-38) we get
(ATQ, AwQ, AHQ)

2-7
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Numerical Examples

The examples below illustrate this idea.

Example A

| INPUT | OUTPUT
Bpr = [ 200 500 300]’ Cost = 1.6250e-+004
pr1 = 25000 Ary = -1.7678e+002
Y, =0 Aty = -1.0000e-002
01 = 7.8540e-001 Afy = -1.4142e-003
pr2 = 50000 Ary = 3.5355e+001
Yy =0 Aty = 5.0000e-003
02 = 2.3562e+000 Afy = -3.5355¢-003
k3 =2
k2, = 1.2500e+009 = 2+ PT1?
k3, = 1.2500e+009
kry =
k%, = 5.0000e+009 = 2 * PT2?
k3, = 5.0000e+009

Example B
’ INPUT Same as Example A but with \

Bg = [ 200 0 500"

OouUTPUT

Cost = 3.6250e+004
Ary = -2.4749¢+002
Ay, =0

Af; = -4.2426e-003
Ary = 1.0607e+002
Athy =0

Afy = -4.9497¢-003

Example C
| INPUT Same as Example A but with | OUTPUT
Yoy =T Cost = 1.6250e+-004
Oy = /4 Ary = -1.7678e+002

Atp; = -1.0000e-002
Af; = -1.4142e-003
Argy = 3.5355e+001
Aty = -5.0000e-003
Ay = 3.5355e-003

The input for this case is a variation of the input in Example A. Note that the output for
this case is the same as Example A, with the exception of a sign swap between Ay and Afs
to account for the orientation difference of the “2” coordinates.

2-8
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Example D

’ INPUT Same as Example A but with ‘

ouTPUT

Yy =m/2
Oy = /4

Cost = 5.5625e+004
Ary = -1.7678e+002
Atp; = -1.0000e-002
A6y = -1.4142e-003
Ary = 2.8284e+002
Ay = -2.0000e-003
Afy = -1.4142e-003

2-9
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3 AN OPTIMIZED REDUCED-STATE FILTER FOR UNKNOWN BIAS

Mookerjee and Reifler [7] present a novel technique for calculating a steady-state
reduced-order filter to track a maneuvering target. The filter they derive is optimized for
performance with a stochastic acceleration. In this chapter, this technique is modified to
derive a steady-state filter optimized for performance with a stochastic measurement bias.
Similar to Mookerjee and Reifler [7], the filter developed in this chapter is a reduced-state
filter.

The principles of a reduced-state filter applied to bias estimation can be understood by
considering [8] and [9]. In these reports, the position and velocity of an aircraft (a Beechcraft
1900) with DMEs [distance measuring equipment], an INS [inertial navigation system], and a
barometric altimeter are estimated. The filter (in [8]) and the smoother (in [9]) were designed
with a state-to-estimate range bias in each DME (up to 5 were used), a state-to-estimate INS
drift, and a state-to-estimate bias in the barometric altimeter. The filter (or smoother) ran
with these additional bias states in tow (i.e., in addition to the position and velocity states).
(The results in [8] and [9] achieved the design goals in position and velocity accuracy.)

We use discrete time dynamical equations in this report. It is fair to consider the state and
output (dynamical) equations to be the dual, in the control theory sense, of the state and
input equations of [7]. These are (8) and (5) of [7]. Compared to the dynamical equations in
Mookerjee and Reifler [7], we eliminate the unknown acceleration from the state equation and
add an unknown bias in the output (measurement) equation, the typical dual situation. We
have:

w(k+1) = (k+1,k)z (k) + B (k) m (k) (3-1)
2 (k) = H (k) -z (k) +v (k) + W (k) u(z(k),\) . (3-2)

The state z(k) at time & is of dimension n. The state transition matrix* ® (I, k), of dimension
n by n, propagates the state in time from k to [ in the absence of noise. The noise input
matrix B (k) is of dimension n by b. The output z(k) at time k is of dimension ¢ and the
output matrix H (k) is of dimension ¢ by n. The process noise term m(k) is of dimension b
with covariance @ (k). In the sequel, x represents positions and velocities, m represents
accelerations, and B (k) is an adjustment matrix between position, velocity and acceleration.
The measurement noise term v(k) is of dimension g with covariance R (k). The bias matrix
W (k) is g by r. The bias function u is R x ¥ — R, and we have that the bias A is a
p-dimensional random vector with mean A and covariance A.

The time update equation, using (3-1), is simply

T(k+1k)=2(k+1,k)z(klk) . (3-3)
The measurement update equation becomes
Tk+1lk+1)=2(k+1k)+ Kk+1){z(k+1)

—H(k+1)Z(k+1k) =W (k+ 1) u(z(k+1[k),A)} , (3-4)

*Bar-Shalom, Rong Li, and Kirubarajan [2].
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where K (k) is the n by ¢ measurement, or Kalman, gain matrix. In the steady-state case,
which is discussed below, the position gain a and velocity gain [ substitute for K (k).

Filter Development — General Case

In this section, we develop the filter equations for the general case. The development in
this chapter is (basically) dual (dual in the sense of control theory) to Section III in [7]. The
error is defined as (we develop the errors analogous to (27) and (32) of [7]):

ek+1lk+)=ax(k+1)—2(k+1lk+1) (3-5)

—x(k+1)—Z(k+1k)—K(k+1)(z(k+1)— H(k+1)Z (k+ 1]k)
~W(k+1)u(Z(k+1[k),\))
=2 (k+1)—7(k+1]k)
~Kk+D{HE+DzEk+)+ok+D)+WE+Dulz(k+1),N)
—H(k+1)Z(k+1k) =W (k+ 1)u(Z(k+1]k),\)} .

Continuing,
e(k+1k+1)

=z(k+1)-K((k+1D)HE+Dz(k+1) - K(k+1)v(k+1)
“Kk+1)W(k+1Du(z(k+1),N)
—Z(k+1k)+Kk+1)HK(k+1D)Z(k+1k)+ K(k+1)W (k+1)u(Z(k+1]k),\)
=0 (k+1,k)z(k)+B(k)m (k) — K (k+1)H (k+1)(® (k+1,k)z (k) + B (k) m (k))
~Kk+D)ok+1)—KE+DW (k+1D)u(®(k+1,k) z (k) + B (k) m(k),\)
~®(k+1,k)z (klk) + K (k+1)H (k+1)® (k+1,k) 7 (k|k)
+K (k+1)W (k+1)u(®(k+1,k)Z (klk),X)
=(I-Kk+1D)HE+1)®(k+1,k) (x (k) -z (k|k))
+(I-Kk+1D)HE+1)BE)m k) — K ((k+1)v(k+1)
—K(k+ )W (k+1){u(®k+1,k)z(k)+B(k)m(k),\) —u(®(k+1,k)Z(klk),\)} .

So
e(k+1k+1)=L(k+1)P(k+1,k)e(k|k)
+L(k+1)B(k)ym(k)— K (k+1) (W (b +1) Auppqjpgr +v (b + 1)) ; (3-6)
where
L(k) = (I - K(k)H (k) (3-7)
an n by n matrix, and
Aty = u (@ (k+1,k)z (k) + B (k) m (k) ,\) —u (® (k+1,k)Z (k|k), ) . (3-8)

3-2
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We make the linear approximation

ou

Aty ~ 5 (@ (k+ 1, k) Az + B (k) m (k))

a=F(k+1]k+1),\=X

0
+ & AN (3-9)
oA =2 (k+1|k+1), A=\
where
Az =c¢ (klk) =z (k) —z (k|k) , (3-10)
and

AN=)\—\. (3-11)
The result obtained is
e(k+1k+1)=L(k+1)®(k+1,k)e(klk)+ L(k+1)B(k)ym (k)
-K(k+1)W(k+1)

(@ (b 1, k) e (BJE) + B (k) m (1)) + 2

a=2(k-+1]k+1),A=X o\
—-K(k+1Dov(k+1)

(o
ox

= <L(/<;+1)—K(kz+1)W(k:+1)au

X

A\
o= (k+1|k+1), A=\

o= (k-+1[k+1),A=X

) O (k+1,k) e (k|k)

K+ )W (k1) 28

AN
O

a=F(k+1]k+1),\=X

+ (L(k+1) —K(k+1)W((k+1) gu ) B(kym(k)—K((k+1Dov(k+1) .
L z=2(k+1]k+1),A=X
(3-12)
Define
F(k+1,k)= (L(k+1) —K(k+1)W((k+1) gu ) O (k+1,k), (3-13)
Ll z=7(k+1]k+1),A=X

an n by n matrix, and

C (k) = —K (k)W (k) 2 , (3-14)
oA o=z (k|k), A=\
an n by p matrix. Set
m (k) =@ (k+1,k) B (k)m (k) (3-15)

and take note that the covariance of m is

Elin (k)i (k)] = Q (k) = E [q»—l (k+1,k) B (k)m (k) m (k) B (k) (@7 (k +1, k))’}

— M (k+1,k)B(k)Q (k) B(k) (@ (k+1,k) . (3-16)

3-3
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Then (3-12) becomes

e(k+1k+1)=F(k+1,k)e(klk) + F(k+1,k)ym(k)+C(k+1)AN-K(k+1)v(k+1) .

(3-17)

We now implement the observation made in [7] that the error e (k|k) may be viewed as

consisting of two components. The first component of error, ¢, is due to the (unbiased)
process noise m, (3-15), and the measurement noise v. The second component of error, @ s
due to the measurement bias. To the extent that the linear approximation is valid, a linear
analysis holds. That is, the two error inputs may be treated in separate equations by applying
the superposition principle of linear analysis. Applying the superposition principle to (3-17)
we get these two equations:

M (k+1k+1)=F(k+1,E) eV (klk)+ F(k+1,k)m(k) —K(k+Dv(k+1)  (3-18)

@D k+1k+1)=F(k+1,k)e? (kk)+C(k+1)-AX. (3-19)

These equations are comparable to (33) and (24) of [7]. Equation (3-18) contains the
unbiased noise and (3-19) contains the bias.
In addition, we require update equations for the total covariance and the covariance of
M (k|k). Define
M (k +11k) = B [ (s + 1]k) e (ks + 1]k | (3-20)

and
ME+1k+1)=E [a“) (k+1lk+1)e® (k+ 1]k + 1)’} . (3-21)
Substituting (3-1) into (3-20) we get that the time updated covariance for (1) is
Mk+1k)=Efzk+1)—2(k+1k)][x(k+1) -z (k+ 1K)

=E[®k+1,k)x(k)+BEk)m (k) —®(k+1,k) T (k|k)]
(@ (k4 1,k)z (k) + B(k)m (k) — ® (k+1,k) T (k|k)]
=E[®(k+1,k) (z (k) —Z(klk)) + B(E)m (k)] [® (k+ 1,k) (z (k) — Z (k|k)) + B (k) m (k)]

=®(k+1,k) M (klk)®(k+1,k)' + B(k)Q (k) B () (3-22)
1

N

Substituting (3-18) into (3-21) measurement updated covariance for &

ME+1k+1)=E [e® (k+ 1k + 1)e® (k + 1|k + 1)’]

E[( (k+1,k) el (k|k)+F(k+1,k)m(k)—K(k+1)v(k+1))

and we use E [v (k) v (1)'] =0 for k # 1 giving
E[F(k+1,k)e® (k|k) (K (k+1)v(k+1))'] = 0. Hence,

<F (k+1,k)e 1>(kyk)+F(k+1,k)m(k)—K(k+1)u(k+1))']
[

ME+1k+1)=E [F (k+ 1, k) e® (k[k) D (k|k) F (k + 1, k)’]

3-4
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+E [F(k+1,k)m(k)m (k) F(k+1,k)+ K (k+1)v(k+1)v(k+1) K (k+1)]
= F(k+1,k)M(klk)F (k+1,k) + F(k+1,k)Q (k) F (k+1,k)'
+K(k+1)R(k+1)K(k+1) . (3-23)

Our goal is to formulate the update equations for the total covariance, so we define the n by p
matrices D (k|k) and D (k + 1|k), and then note

2 (k|k) = D (k|k) - AX . (3-24)

In view of our linearized analysis, we can define D (k|k) in this way because the system output
(@ (k|k)) is a linear function of the system input (AX). Proceeding, D (k + 1|k) is defined as

D(k+1|k) = F (k+1,k) D (k) . (3-25)

In (3-24), €® and A\ are known quantities [the equation defines D (k|k)]. In (3-25), F (k)
and D (k|k) are known quantities. Then, substituting (3-24) into (3-19), we obtain

D(k+1k+1)-AX=F (k+1,k) D (k|k) - AX + C (k + 1) - A

= D(k+1lk)- AA+C(k+1)- AN, (3-26)
and consequently (since (3-26) holds for all A\)

Dk+1k+1)=D(k+1k) +C(k+1) . (3-27)

Let S be the total error (due to m, v, and \) covariance. By superposition, we get the
total error by the addition of the two error terms. We observe that since the two errors, e(
and £, originate from independent sources, they remain independent for all times k. By
considering the definition of S (below), we observe that

S(k+1lk) = E [e(k+ 1|k)e (k + 1]k)']
E[ (k4 11k + @ (k4 118)) (D (k + 1[R) + ¢ (k+1]k))/}
[ D (k + 1]k) 0 (k+1\k)} [< (k + 1]k) & (k:+1|l<:)]

=M (k+1k)+ E [5(2) (k + 1]k) e® (k + 1|k)’]

=M (k+1k) + E [® (k+1,k) D (k|k) AN - AND (k|k)' @ (k+ 1,k)'] ,
using (3-1)°, (3-3), and (3-24). Hence,

Sk+1k)=M((k+1k)+®(k+1,k)D (klk) E [A)\A)\’] D (k|k)' ® (k+1,k)
Finally, we note

S(k+1lk) =M (k+1|k) + ® (k+ 1,k) D (k|k) AD (k|k)' @ (k + 1, k) . (3-28)

®The process noise part of (3-1) does not figure into @,

3-5
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Basically, this is the same result found in (19) of [7].
We next obtain the measurement update for S

Sk+1k+1)=E[e(k+1k+1)e(k+1k+1)]
=E[(z(k+1)—-Z(k+1k+1)(z(k+1) —Z(k+1k+1))]
=FE[{z(k+1)—z(k+1lk)
~K(k+1)(z2(k+1)—H((k+1)z(k+1k) =W (k+ 1) u (Z (k+1]k), )}

{ditto}'] ,
using (3-4),
=E[{z(k+1)—z(k+1]k)
“Kk+ D) (HE+Daz(k+ D) +0(k+1)+W(k+Du(@(k+1),)
—H(k+1)Z(k+1k) =W (k+ 1)u (Z (k+1|k),A)) } {ditto}'] ,
using (3-2),

—E{a(k+1)—2(k+1k) — K (k+ 1) H(k+1) (z(k+ 1) — Z (k + 1]k))

~K(k+1)(vk+1)+W(k+1Du(z(k+1),A) - W(k+1)u(@k+1]k), )} {ditto}']
—E[{z(k+1)—Z(k+1k)—Kk+1)Hk+1)(x(k+1) -2 (k+ 1]k))
Kk+1D)(wk+1)+W(k+1) (u(zk+1),N) —u(@(k+1]k), X))} {ditto}']
—E[{z(k+1)—Z(k+1k)— K (k+1)H(k+1)(x(k+1) -2 (k+1]k))

K (k) (v(k+1)+W (k+1)(u(®(k+1,k)z(k)+m(k),\) —u(®(k+1,k)T(klk),\))}
{ditto}']
—E{ek+1)—Z(k+1k) - K(k+1)H(k+1)(z(k+1)—Z(k+1]k))
~K(k+1) (v(k+1)+ W (k+1) (Augiqpe1)) b {ditto}” ] |

using (3-8).

We take this next step only to the extent of the approximation,

Sk+1k+1)=E{(I—K(k+1)Hk+1)(@(k+1)—2(k+1]k)

~K(k+1) <v(k+1)+W(k+1) (gZ(@(lﬁJrl,k)s(km)er(k))Jr;AA))}

{ditto}'] ,

using (3-9), where we have omitted the substitution limits on the partial derivative fractions.
Continuing,
=F{(I-K(k+1)H(k+1))e(k+1|k)
ou ou
—K((k+1)vk+1)+W(k+1) a—s(k—i—l\k)—i—aA)\
{ditto}']

3-6
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_B H(I—K(kJrl)H(kJrl) —K(k+1)W(k+1)gZ>e(k+1|k)

K (k+1) (v(k+1)+W(k:+1)auA/\>}

B
{ditto}'] .
Let 5
H (k) = H (k) + W (k) af: (3-29)
and .
R(k) = R (k) + W (k) gzz\gz W (k) . (3-30)

Therefore, we have
S(k+1lk+1) = (I—K(kJrl)fI(k:Jrl)) S (k + 1|k) (I—K(k+1)f](k+1)>l

+K(k+1)Rk+1D)K (k+1)

du

—(I-K(kﬂ)f{r(kﬂ))E[e(k+1|k)AX] (W(kJrl)a)\

)/K(k+1)’

K (k+1) (W(k:+ 1) g;‘) E[AXe (k + 1|k)] (I—K(k+ 1) H (k + 1))' .
Combining (3-1) and (3-3) and substituting into (3-24) yields

Ele(k+1k)AN] = E [(5@) (k+1lk) + @ (k + m)) Ax}
—E [e@) (k + 1|k) Ax} —®(k+ 1,k E [g@) (k|k) Ax}

=& (k+ 1,k) E [D (k|k) ANAN] = ® (k + 1,k) D (k|k) A .

Hence,
S(k+1lk+1) = (I—K(k+1)ﬁl(k+1))5(k+1\k) (I—K(k+1)ﬁ1(k+1)>'

+K(k+1)RMk+1)K (k+1)

_(1_K(k+1)fi(k+1))@(k+1,k>D(k1k)A(W(kﬂ)g";)/f{(mn’
—K (k+1) (W(kz+1) g@ AD (k) ® (k + 1, k)’ (I—K(k+1)f1(k+1))' . (331)

Equation (3-31) is similar in form to (37) of [7]. The completing-the-square technique may be
used to solve for K (k+ 1) in this equation. First, we expand (3-31) as

Sk+1k+1)=Sk+1k)+K(k+1)H(k+1)S(k+1k)H(k+1) K (k+1)

+K(k+1)Rk+1)K (k+1)

3-7
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K(k+1)f{f(k+1)¢(k+1,k)D(kk)A<W(k+1) g)\)lK(lﬁ—l)’

ou

+K (k+1) (W(k+1) B\

) AD (k|k) ® (k+1,k) H(k+1) K (k+1)

—® (k+1,k) D (k|k) A (W(k+1) g)\)lK(k+1)’

ou
oA

~K(k+1)Hk+1)Sk+1k)—Sk+1k)H(k+1) K (k+1) .
Next, gather the like terms:

—K(k+1)(W(k+) >AD(/~cyk) (k+1,k)

Sk+1lk+1) =5 (k+1]k)
+K(k+1)(f[(kz+1) (k+1k)H (k+1) 4+ R(k +1)

+f1(k+1)c1>(k+1,k)D<k\k)A<W(k+1) gz)

ou

(e

A) AD (k|k) ® (k+1,k) H (k + 1)') K (k+1)

~K(k+1) ((W(kJr 1) 2A> AD (k|k) ® (k+1,k) + H(k+1)5 (k+ 1|k)>

—<<I>(k+1,k)D(k\/<;)A<W(k+1)gz> + S (k+1|k) H (k+1)> (k+1) .  (3-32)

To condense the notation, define

ou

X(k+1):<W(k+1)a)\

> AD (k|k)' @ (k+1,k)

Y (k+1)=H(k+1)S(k+1|k)H (k+1) + R(k+1)

+ﬁ(k+1)q>(k+1,k)D(klk)A(W(k“) gz)

ou

o

> AD (k|k)' @ (k+1,k) H (k+1)

= (fl(k+1) (k+1k)H (k+1) +R(kz+1)+fl(k:+1)X(k+1)’+X(k+1)fI(k+1)’>

and

Z(k+1) = (X (b+1) + 8 (k+ k) H (k+1)) Y (k+1)""

We have that X (k) is a ¢ by n matrix, Y (k) is a ¢ by ¢ matrix, and Z (k) is an n by ¢
matrix. Then (3-32) becomes

Sk+1k+1)=Sk+1k)+K(k+1)Y (k+1)K (k+ 1)

—K(k+1)(X(k+1)+f[(k+1)5(/~c+1|/~c))—<X(k+1)+S(l~c+1|k) (k+1)) (k + 1)

3-8
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=Sk+1k)+K(k+1)Y(k+ 1)K (k+1)
“K(k+1)Y (E+1)Y 1 (k+1) (X(k+1)+ﬁ(k+1)5(k+1|k))
—(X(k+1)’+S(k+1|k)ﬁ(k+1)’) Y (k+ 1Y (k+1) K (k+ 1)
=Sk+1k)+KE+DY(k+DKK(k+1) -Kk+1)Y (k+1)Z(k+1)
~Z(k+1)Y (k+1)K (k+1)
=Sk+1E)+KE+D)YE+D)KE+D —KE+DY (k+1) Z(k+1)
~Z(k+1)Y (k+1)K (k+1)
+Zk+1D)Y k+1D)Zk+1) -Z(Ek+1)Y (E+1)Z(k+1)
=Sk+1k)+(K(k+1)-Z(k+1)Y(k+1)(K(k+1)—Z(k+1))
~Z(k+1)Y k+1)Z(k+1) . (3-33)
We see that (3-33) is minimized by setting K (k + 1) = Z (k + 1). The optimal filter gain (i.e.,

optimal Kalman gain matrix) is

K(k+1)=Z(k+1)= <S(k+1lk)ﬁ(k+1)'+¢(’”1’]“)])("“““)/\<W(k+1)gz>,>

X (ﬁ(kJr1)S(k+1|k)f{f(k+1)'+§(k+1)

+f[(k+1)<1>(k+1,k)D(k|k)A(W(kJrl)?;)/

—-1
+ (W (k+1) g@ AD (klk) ® (k+ 1,k) H (k + 1)’> : (3-34)
which is an n by ¢ matrix. The form used below is
K (k+1) (f{r(k;+1)S(k+1\k)ﬁf(k+1)’+ﬁ(k+1)

+f[(k+1)<1>(k+1,k)D(k|k)A(W(k+1)g?;)/

- <W (k+1) gz) AD (k|k) ® (k+1,k) H (k + 1)’>

=S (k+1k)H (k+1) +® (k+1,k) D (k|k) A <W(k+1)$>/ . (3-35)

Filter Development—Steady-State Case

We now examine the steady-state case of our problem. Referencing equations (41-43) of [7]

we have
|1 T 1|1 =T
@-[0 1] , ® —[0 1 ], (3-36)

3-9
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where T’ is a step size in seconds,

and

There are three cases for B. First, let

We have that m (k) is a velocity noise in this case. In the other two cases, m (k) is an

acceleration noise. In these cases

a-t]
and
n [T

(3-37)

(3-38)

(3-39)

(3-40)

(3-41)

In (3-39), process noise enters the system by the velocity state as velocity. In (3-40), process
noise enters the system by the velocity state as acceleration multiplied by time. This noise
affects the position state by way of the integration in the dynamics. This is similar to the
set-up in Benedict and Bordner [3]. In (3-41), process noise enters the system as acceleration
in the position state and velocity state. This arrangement is similar to the set-up in Kalata [6].

Case a: Ba:[O 1]/

We treat the first case then, subsequently, appropriately modify various equations to adapt
to the other two cases. Hence, considering B as in (3-39), that is B = B,, with p as position,
v as velocity, and z as the measurement, the state transition and output equations for the

steady-state case are
iy =L T [RE 3]

z@:[lu[ﬁg%ww+mﬂmgwy

Setting u (x,\) = A, the linear approximations from (3-9) become

Ou =[0 0]
O =2 (k|k),\=X
and 5
gu —1.
oA o=z (k|k), A=\
Then, substituting (3-44) into (3-29)
~ ou
H:H+W%:[1OMJ[OO]:U(”:H

3-10
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and substituting (3-45) into (3-30)

~ ou  ou' _,
R—R+W5A5W—R—I—l-l-A-l-l—R—l—A. (3-47)

Considering (3-15),

w3 7]t [

From (3-16) and (3-39) we have that
_ ) _ 2 _
Qzé_lBQB’(cb_l):[(l) fH?]Q[O 1][_1T ?]:[_TT 1T]Q. (3-48)

The steady-state filter gain is

K= [ (3-49)

ir)
BIT |~
As mentioned, (3-49) is where « and f fit in for the Kalman gain matrix K (k) given by
(3-34). These gains are obtained by computing the steady-state values for all variables in
(3-34). The objective of this section is to find a relationship between a and f.
The steady-state version of L (k) from (3-7), L, is

L(k):([-KH):[(l]H—[B‘;‘T}[l o]z[iﬁ_/gi(l)]. (3-50)

The steady-state version of F' (k) from (3-13), F, is

([ )L o o3 - [255 O] - o

The eigenvalues of F are

(a+5)
2

1
6172 = 1 — Zl: 5\/20(/8 — 4,8 + sz + 52 . (3—52)

Then, referring to (3-14), the steady-state version of C (k), C, is

C:_[57T]'1'1:_[57T]' (3-53)

The measurement updated steady-state covariance M (k|k), referring to (3-23), is
M = lim M (K|) —FMF +FQF +KRK' . (3-54)
—00
Using the superposition principle by letting

M=Mg+ Mpg (3-55)
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and then solving
M "+ KRK (3-56)

F +
F +FQF . (3-57)
Comparing (3-49), (3-51), and (3-56) to (46), (47), and (48) of [7], we see that our solution for

M, is of the same form as (49) of [7]. Consequently,
R [2a2+2ﬂ—3a5 5(2a—6)/T] ' (3-58)

Mr= i 2a=p) | fRa-p)/T  26°/7°

The solution of M remains to be determined. From (3-48) and (3-51),

11—« (1—a)THT2 —T]_Q_[l—a (1—a)T]’

FQF:|:_/B/T 1-p -T 1 —,B/T 1-8
00
:[o 1]@' (3-59)
Substituting (3-51) and (3-59) into (3-57) gives
P R S A b v l—a  —B/T 0 0
MQ_[—ﬁ/T 1-5 }MQ[(l—a)T 1_5]+[0 1]0- (3-60)
In longhand,
Mo = |:m11Q mng :|
¢ mi2Q M22qQ

_ [ (1 — a)2 (mHQ + 2T M2 + T2m22Q)
(1—a) (=Bm11g/T + (1 —28) m12qg + T (1 — ) M22q)

(1 —a) (=fmuq/T + (1 —28) mi2q + T (1 — B) Mazg) 007 ]
(B%/7%) Mg + (26 (8 = 1) /T) ag + (1 — 26 + 5%) Tz ] * [ 0 1 ] Q. (361)

Hence,
miig — (1 — a)? (M11g + 2TM2g + T?M2n0)

[ mi2q — (1 — @) (=Bmiq/T + (1 — 28) Mg + T (1 — B) Mazq)

miaqg — (1 — ) (=fmi1g/T + (1 — 28) Miaq + T (1 — B) Ma2aq) ]
Maaq — (B2/T?) g — (26 (8 — 1) /T) Miaq — (1 — 28 + 5°) Tazq
0 0
_[O 1]-@. (3-62)
We get three equations in the three unknowns m11¢, M12¢, and Maag (defining A by the
3-by-3 matrix on the right hand side),

mi1Q 1-(1-a)? ~2(1-a)’T —(1—a)?1? mi1Q
A mi2Q = (l—oz)ﬁ/T 1—(1—0[)(1—25) —(1—04)(1—5)T mi2Q
m22Q - (52/T2) -28(B-1)/T 1 - (1 -2+ 52) m22Q

3-12
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0
=10 . (3-63)
Q
where (3-63) also defines the 3-by-3 matrix A. Taking the matrix inverse of A to solve for M,
o 1-(1-a)?  —2(1—a)T —(1-a?T> 170
mig | = | 1-a)f/T 1-(1-a)(1-28) —(1-a)1-5)T 0
M22Q - (B/1?) —28(8-1)/T  1-(1-28+p° Q

The determinant of A is: det (A) = 4af — a3? — 20?3 = af (4 — B — 2a); and should not be
zero for the inverse to exist. This is satisfied by these conditions:

1. a#0
2. B#0 . (3-64)
3. B#4—-2«
If the determinant of A is not zero, we can obtain the solution:
mi1Q T2 (—2 + 5o — 402 + a3)
mig | =Q- | T (—204 +B8—af+3a%— a3) / (—4aﬁ +af? + 2a2ﬁ) ) (3-65)
M220Q (—25 + 2a8 — 202 + a3)

In matrix form,

T — Q [ Tz(—2+5oz—4a2+oz3)
Q= (40 +aB?+2228) | T (—2a+ B8 — af + 3a* — o?)
T (—2a+ B — af + 3a® — o?)
(—QB + 28 — 202 + a3) ] (3-66)
And finally M is obtained from (3-55), (3-58) and (3-66):
7 - R [2a2+25—3aﬁ B(2a—ﬂ)/T]
S a(d-2a-p)[ BQRa-p)/T 26%/T?
N Q [ T? (=2 + 5a — 40® + o) T(—2a+ﬁ—aﬁ+3a2—a3)]
(74a5 +af? + 2a2,6) T (—2a + B —af +3a% — a3) (—26 + 208 — 202 + a3)
(3-67)

We see that m11 = m (a, B,T,R,Q), mi2 =2 (a, 5, T, R, Q) and o9

= mag (o, B, T, R, Q). The usual technique for solving the Liapunov equation (3-54) is by
algebraic manipulation and using the symmetry of the matrix, as demonstrated with the
solution (3-67). Numerical solutions may be obtained by repeated propagation until arriving
at steady-state. We note that m11/Q is the so-called noise reduction factor; see [2].

[¢]
The time-updated steady-state covariance M, referring to (3-22), is

o

M= klim M (k+1]k) = klim ®M (k|k) @'+ BQB' =& (Mpr+ Mg) ®' + BQB' . (3-68)
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We get
ST — R 1 T7[22428—-3a8 B(2a—p8)/T 1 0
B T a(d=2a—-p)|0 1 B(2a—B)/T 23212 T 1
B R [2a2+25+a6 ﬁ(2a+5)/T]
S a(—2a-p)| BQRa+8)/T 2% /T?
and
OMd' =
B Q [1 TH T? (=24 b — 40* + o?)
_(—4a/6’+a62+2a2,6’) 0 1 T(—2a—|—ﬂ—aﬁ+3a2—a3)

T(—2a+ﬁ—aﬁ+3a2—a3) } [ 1 0}

(=28 + 228 — 20 + a?) T 1
- Q T% (-2 + a) T (=20 — B+ af + o?) }
~ (—4aB + af? +2a2p) [ T(—2a—B+aB+a?) (—28+2a8—-2a*>+a?) | °
Hence,
iy R [20424-26—1-04/3 B(2a+5)/T]
Ca(d—2a-p) [ B(20+8)/T 26%/T?

n Q [ T? (-2 + a) T (20— B+ aB+a?) }

(—4045 + ()[62 + 2@26) T (—204 — B+ af+ a2) (—25 + 208 — 202 + a3)

0 0
+ [ 0 Q] . (3-69)

We need steady-state versions of these: designating

D = lim D (k|k)

k—o00

and .
D= klim D (k+1|k) ,

we then have, referring to (3-25) and (3-27),

D=FD
D=D+C

then

D=D-C
Continuing,

FD=D-C

FD-D=(F-I)D=-C;

hence,
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Using (3-51), and (3-53)
o= ([ -0 ) (L))
[ T [
e I
)= 7]

berp=[ i N[ ][5 ]

Finally, the steady-state time-updated total (due to noise and bias) covariance, S, is
obtained by substituting into (3-28),

Hence,

S = [‘f” 51 ] — M+ ®DAD'@

So1 S22
My My [1 T}[—l} B [1 0}
- o o + A 1 0
{ My Mo ] 0 1J1L0 : Hr o
_ ]\0411 ]\0412 . [ A O ] ' (3-70)
Moy Moo 00
So, using (3-69),
§11 §12 :R[2a2+25+a,8 ﬂ(2a+ﬁ)/T]
S Sy | @l@-2a-0) | BRa+p)/T  28°/T7

Q [ T? (-2 + a) T (-2a— B+ aB +a?) }
(—4af +af?+2a28) | T(—2a—pB+ab+a?) (-28+2a8—2a%+a%)

[he] ool

S11 =M1 +A

In particular,

_ R(22% 428+ af) QT? (—2 + ) (3-71)
a(4—2a-p5) (—4aB + aB® + 2a23)
and . .
Sa1 = Moy
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_ RB(2a+p) +QT(—2a—ﬁ+o¢B+a2) (3.72)
a(d—2a-p)T (—daB + af® +2028)
We now turn our attention to (3-35). We first simplify the summands in the left hand side of
(3-35). In steady-state,

HSH +R=[1 0] {f“ 512] [1]+R+A

So1 Sa2 0
:§11+R+A. (3-73)
Also,
~ ou’ 1 7] -1
H(I)DA<W8)\>_[1 0][0 1HO}-A-1-1_—A, (3-74)
and 5
GUNAD ' H = — _
<W8A>AD<I>H_ A (3-75)
For the right hand side of (3-35) in steady-state,
SH 511 512 [(1)]: 511 7 (3-76)
S12 Sz | S12
and , _
— ou 1 T -1 —A
() (LT[ [2]. e

Substituting (3-73), through (3-77) into (3-35) gives

{ﬁ%¢<§u+R+AAA){§i]+{(¢}.

This, written as two scalar equations,

a<§11+R+A—A—A>:a<§11+R—A):§11—A (3—78)

5(%11+R+A—A—A):§<§11+R—A>:§12. (3—79)

Substituting (3-71) and (3-72)

R (202 + 2B+ af) QT? (-2 + a)
a(( a(d—2a-0) +(—4a6+a62+2a26)+A FR-A

_ R(20* 428+ ap) QT? (-2 + )
= 2B +(—4aﬂ+aﬂ2+2a2ﬂ)+A_A
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R(2a2+26+a6) QT? (-2 + a)
B(( a(4—2a—p) +(—4a6+a52+2a26)+A R

B RB (2a+ f3) QT(—2a—B+o¢ﬁ+a2) T
\a(d—2a-8)T (—4046 +aB?+ 20426) '

We will later remark on the fact that A cancels out at this point:

R (2a% 4+ 28 + ap) QT? (—2+ ) TR
“\Tad-22-p) (—4aB + af? + 2025)

R (2042 + 28+ 045) QT? (-2 + a)
a(4—20—p3) (—4aB + aB® + 2023)

5<R(2a2+25+aﬁ)+ QT? (2 + «) +R>

a(@—2a-B) ' (—4aB+aB® +2025)

_ RB(2a+p) QT? (—2a — B+ af + a?)
T a(d—2a—pB) " (—4aB+af® +2a28)

We define p? = QT?/R. With Q in (m/sec)?, T in seconds and R in m?, p is unitless.
Substituting this in the previous two equations, we obtain

(20° +28 + ap) PP(=2+0)
a( a(4—2a-p) + (—4apB + af® + 202P) 1

(202428 +ap) P2 (=2 +a)
a(d—2a—-p)  (—4af+ af®+2a2p)

(20 + 28+ ap) P2 (=2 + )
/B(a(4—2a—,6’) +(—4a6+a62+2a26)+1
_ BRa+p) | p(20-B+af+a?)

S ad-20-0)  (—4aB+ap?+2a28)

We divide the previous two equations and cancel an «,

a (207 +28+ap) (48 + % +2a8) +p* (2 + ) (4 — 20— f)
B BQa+pB)(—48+ B2 +2ap) + p(—2a — B +af+a?) (4 —2a—F)

Cross multiplying gives:
28" + (4o — 8) B2 + p* (o — 20+ 2) B+

p? (3¢ — 100® 4+ 120 — 8) B+ p? (20" — 8a® +8a?) = 0. (3-80)

Equation (3-80) gives our relationship between v and (. The noise ratio p, a parameter in the
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equation, is known, or known to be within a range. Equation (3-80) may be factored’
B+ (2a—4) (28°+p* ((o® =2 +2) B+ ® (@ —2))) =0 . (3-81)

Hence, = (4 — 2a) is a solution that is independent of p. This solution is not permitted
since it violates Condition 3 of (3-64). There is a second real solution for 8 given a (which
depends on p.) The remaining two solutions for § given a may be a complex conjugate pair.
The table below gives representative solutions to (3-80). The two real solutions are presented.
We do not use the second one listed because of Condition 3. Appendix B gives the solution to
the cubic equation part of (3-81). Of course, the Newton-Raphson method may be used to
compute all of the solutions to (3-80).

P« B8

2 0.2 ] 0.04385, 3.6
4 0.2 ]0.04386, 3.6
6 | 0.2 | 0.04389, 3.6
6 | 0.4 | 0.1866, 3.2
8 | 0.2 | 0.04389, 3.6
8 | 0.4 | 0.1870, 3.2
10 [ 0.2 [ 0.04389, 3.6
10 | 0.4 | 0.1873, 3.2
10 [ 0.5 | 0.2959, 3.0

These o and 3 give that the eigenvalues of F, in (3-52), have norm less than 1. Hence, by
Theorem 2.1, page 64 of Anderson and Moore [1], Mpr and M, the solutions to (3-56) and
(3-57) respectively, exist, are unique, and are positive definite.

Case b: B, = [ 0 T]/
We consider the development of this section using (3-40), that is B = By. The effect of

(3-40) on (3-15) is

v 3 7[5 [7)r

Continuing, we observe that, roughly speaking, we replace every “Q” in the above
development with a “QT?”. Specifically, (3-48) becomes

_ 2 _
Q=3o"'BQB'd Y = { TT IT } Q-T?. (3-82)

Also, (3-59) becomes
FOF = [8 (1) ]Q-Tz. (3-83)

In the development involving Mg, (3-60) through (3-66), we multiply every Q by a T?2. Doing
this, (3-66) becomes

SProvided by Armido R. DiDonato.
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T — Q-T? [ T2(—2+5a—4a2—|—a3)
Q= (—4aB + af? +2a25) | T (—2a+ B —af +3a* —a?)

T (—2a+ B —af + 30 — o?) ]

(=28 + 208 — 202 + o) (3-84)

These changes continue on to M and M, giving that (3-69) becomes

5 R [2042—1—26—1-04/3 6(2a+5)/T]
T a(d-2a-8)| BRa+p)T 232 /T?

n Q- 17 [ T? (-2 +a) T (—2a— B+ af + a?) }
(—4aB+ap*+2a28) | T (—2a—B+aB+a?) (-28+2a8—2a%+a?)

0 0
[0 1]'T2Q'

Finally, looking at the effect of (3-40) on the steady-state time-update total covariance,
putting in 72Q for @ in (3-71) we obtain
S11=Mi1 +A

_ R(22®+25 + aB) QT* (—2 + a)
T Ta@—2-5) | (daBtaF+2a7) (3-85)

and doing the same in (3-72) gives

So1=Mn
__BBQRa+p) | QT (-2a-f+af+a?)
T a(d—2a-0)T (—4ap + af® + 2028)
Substitution of (3-85) and (3-86) into (3-78) and (3-79) gives

(3-86)

R (202 4+ 28 4 af) QT* (-2 + a)

a( a(4d—2a-p) +(—4a6+a62+20¢26)+R
_ R(22%+28+ ap) QT* (-2 + «)

a(4—2a-p) (—4aB + af? + 2a2p)
8 R (20% + 28+ af) QT* (-2 + a) <R
a(4—-2a—pf) (—4ap + af? + 2028)

_ RB(2a+p) QT* (—2a — B+ af + a?)
a4 —2a-p) (—4aB + af? + 2023)

This time we define p? = QT*/R. With @ in (m/ se02)2, T in seconds, and R in m?, p is
again unitless. We again obtain the result (3-81), but with p? interpreted differently.
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Casec: B.=[T?/2 T ]/

We consider the development of this section using (3-41), that is B = B.. The changes are
more extensive than they were before with (3-40). The effect of (3-41) on (3-15) is

amean [} 7|77 - [57]:

For (3-48),

Q=3 'BQB'® V= [ _1;/2 } Q-T2 T ]= [ _T;//‘; _€/2 } Q-T?. (3-87)

Continuing, we find

| 4?2}Q“Q{i5§*mff%Ty

_[ 72 (1 - a)? T(l—a)(2—5)]‘QT2
TU-a)@-8) (527 .
and this is considerably different from (3-59). As before, (3-63),

m11Q 1—(1—a)? —2(1—a)’T —(1—a)’*T1?
&l

FOF - [

1-a)B/T 1-(1-a)(1-28) —(1-a)(1-8)T
—(B%/T%) —28(B-1)/T  1-(1-23+p%)

. [ T2(1—0)2 ] QT2

ma2Q

T(1-a)(2- )
(B-2)
As before, the matrix that is inverted is referred to as "A", and we require the same
conditions on its determinant, which are given in (3-64). We find that

4

_ QT? [ T2 (8 — 20 — 28 + 43 + 160* — 4a® — 202f)

Mq= 4 (4@5 —af? - 20425) T (8a — 483 +4aB — 1202 + 40> + B% - aﬂz)

88 — 1603 + 8a2 — 403 — 282 + 3a3% + 420 (3-88)

In this case, we obtain M from (3-55), (3-58) and (3-88):

R [2a2+25—3a5 B(Qa—ﬁ)/T]
a(d—2a—p) BRa-p8)/T 262 /T*

N QT? 81?2 — 20T%a — 2723 4+ 4T? a3 + 16T%a? — 4T?%a3 — 27202
1 (408 — af? — 2028) 8T — AT B + 4Taf — 12Ta? + 4Ta? + TB* — TaB?

8T — ATB + 4Taf — 12To? + 4T + T2 — TaB? }

T(8a — 48 + 408 — 1202 + 40® + 5% — aﬁz) ]

M =

83 — 16a8 + 8a2 — 403 — 262 + 3052 + 4023 (3-89)

3-20



NSWCDD/TR-12/555

Moving on to the time-updated steady-state covariance, we first compute

— QT? 8T2% — AT?q — 2728 — AT?af3 + T?a3? + 272023
OMod' =

4 (40 — af® —202p) | 8Ta+4T3 —12Taf — 4Ta® — TF* + 2Taf3* + 4T

8Ta + 4T3 — 12T a3 — ATa? — T5? 4+ 2Taf? + 4T3
88 — 1603 + 8a2 — 403 — 282 + 3a3% + 428 '

and note that ®M r®’ is the same as before. Following (3-68) we obtain

o R [2a2+2ﬁ+a5 ﬁ(2a+5)/T]
S a(d—20—-p) | B(2a+p)/T 26%/T*
Q- T? 8T2 — 4T2q — 2728 — AT%af3 + T2a 8% + 272023
T 1(10B — aB® — 2a25) | 8Ta +4TB — 12Taf — 4Ta? — T + 2Ta B> + 4Ta?B

8Ta + 4T ~12T0ff — 4Ta® ~ T§* + 2Taf’ + 4Ta?p | [ 47" 37°7 (3-90)
83 — 1608 + 8a2 — 4a® — 262 + 3a8% + 40283 313 12 '

We repeat (3-70)

g ]\0411 ]\0412 _I_{/gg}
Mar Mo
and then substitute from (3-90)
S11 Sz :R[2a2+25+a5 5(2a+5)/T]
Sy 9y | @@—20-8)| B(2a+p)/T  28%/T°

N Q-T? 8T2 — 4T?%o — 212 — 4T? 3 4+ T%a 5% + 2172025
4 (40 — af? — 2a28) | 8Ta+4TB —12Taf — 4Ta® — TB* + 2Taf? + 4T’

8T + ATB — 12T af — ATa? — TB? + 2TaB? + ATa?3
88 — 1603 + 8a2 — 403 — 2% + 303 + 4023 }
(iR e [33]
In particular (as before)
§11 = J\O411 +A
R(20®+28+af)  QT?(8T% — AT?a — 2173 — AT?af + T?aB? + 21702 p)

_ L
- a(d—2a-p) * 4 (408 — aB® — 2a2p) +4T?+j:
3-91

and 5 5
So1 = Moy
RB (2a + B) QT? (8Ta +4TB — 12Taf — 4Ta? — TB* + 2TaB? + 4Ta?B)  T3Q
04(4—204—B)TJr 4 (4aB — ap* — 2a2p) Tty
(3-92)
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Substituting (3-91) and (3-92) into (3-78) and (3-79), we obtain

<R (202 + 28+ aB)  QT* (8 —4a — 28 — 4af + aff? + 202)

|1
a(d—2a—03) 4(4&5—&52—20{25) +ZT Q+R>

_ (R(202+28+0aB) QT*(8—4a—283—4af + af? + 2a°p) Lra
"\ ad—2a-p) 4 (4aB — aB® — 2a28) e

and

5 (R (202 + 28+ af)  QT* (8 — 4o — 25 — 4aff + af? + 20%0)

L4
a(d—2a-0) 4(4a,6’7a,6272a2,6’) +ZT Q+R>

[ RBQRa+p) N QT? (8a + 48 — 1208 — 4a® — 52 + 2a8% + 402) . %\ .,
S \a(d—2a-p)T 4 (408 — af® — 202H) 2 '

Again we define p? = QT*/R. With Q in (m / sec2)2, T in seconds, and R in m?, p is again
unitless. In this case, p is referred to as either the target maneuver index or the target
tracking index; see [2]. Again we note that A drops out. This modifies the above as follows:

(202 +28+aB)  p* (8 —da—28—4aB+af*+24%8) 1,
(a(42a,6’) + 4 (4aB — af® — 2a2p) +1p+1

B (2a2 + 28 + ozﬁ) p? (8 —4a — 28 —4af + % + 20426) 1,
a4 —2a-p) + 4 (4a8 — af® — 2a2p) +1p

and

(20 +25+0f) | P (3-4a—20—daf+af’ +275) 1,
a(4—2a—p) i 4 (4ap — af? — 2020) v

_ [ BRa+p) +P2(804+46—12@5—4a2—52+2a,@2+4a2ﬁ)+12
-~ \a(d-20-p) 1 (408 — af? — 202P) 27 )

We divide the previous two equations,

(2(12 + 28 + a,B) 0? (8 — 4o — 2B — 4aff + af? + 20425) 1,
N ad—2a-p) 108 (4— B —2a) Tgr
B[ BRa+B) PP (8a+48— 1208 —4a® — B2 + 208 + 4a28) 1,
a(d—2a—B) 108 (4— 5 — 2a) Tar
(2a2+26+a6) p2(8—4a—2ﬁ—4a6+a52—|—2a26) 1
( d—2a-5) 16 (4— B - 2a) P
a BRa+pB)  p? (Ba+4B8—12a8 — 4a® — 5% + 2a8* + 4a?p) 1,
d—2a-3) " 16 (4— B — 2q) e
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(46 (2042 + 28+ 046) n p? (8 — 4o — 28 —4af + af® + 2@25) n p2a,6’>

(4—2a—p) (4—8-2a)
(482 20+ 8) 0 (8a+48— 1208 — 40% — B + 2082 + 402B)
((4 ) (1—F —2a) T 2pef

4B (202 + 2B+ af) + p? (8 — da — 28 — 4aB + af® + 202B) + p*aB (4 — 2a — f)
4p? (2 + B) + p? (8a +48 — 1208 — 4a? — 5% + 2a8° + 4a2ﬁ) +2p%af (4 — 2a — B)
4B (202 + 28+ af) +2p° (4 — - 2a)
482 20+ B) + p? (8ar+ 48 — 4af — da2 — B2)

Therefore,

o (482 (20 + B) + p? (8 + 48 — 4af — 4a® — B2))
=B (46 (20> + 28 + af) + 20> (4 — § — 20)) .

Expanding,
p* (8aB — 8B + 8a® — 4a® +253% — aB® — 4a’B) —88° = 0. (3-93)
Before proceeding with a numerical solution and demonstration of this equation, we will
need to review the Kalata relationship [6]. With p a given, there are two equations in the two
unknowns « and :

B=(4-20)—4/1—a (3-94)
and
(4—20)—(A+p)VIi—a=0. (3-95)
Using (3-94), we can rewrite (3-95) as
52
2 _
p° = o) (3-96)

Equation (3-94) gives the Kalata relationship between o and 5. When we know the correct p,
(3-96) gives the applicable o and . Equations (3-94) and (3-96) are in [6]; see page 176.

B from (3-93) given « and p
p* |« B

2 0.2 0.044390
2104 0.19393
4 10.2 0.044417
4104 0.19683
6 |0.2 0.044426
6 | 0.4 0.19785
8 10.2 0.044431
8 104 0.19837
10 | 0.2 0.044433
101 0.4 0.19869
10 | 0.5 0.32640
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Optimal o and S given p (3-93) ‘ a — 3 with Kalata relation
o p p o g

0.36 0.08 0.1 0.36 0.08
0.50514 0.17587 0.25 || 0.50514 0.17587
0.62837 0.30481 0.5 || 0.62837 0.30481

0.75 0.5 1 0.75 0.5
0.85410 0.76393 2 0.85410 0.76393
0.92820 1.0718 4 0.92820 1.0718
0.97871 1.4590 10 0.97871 1.4590

As p approaches infinity, a approaches one and [ approaches two. From this table, we see
that (3-93) matches the Kalata relationships (3-95) and (3-96). Mookerjee and Reifler [7] also
got the Kalata relationship between « and  for their problem as well. Not surprising, since
as mentioned above, these are dual problems.
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4 SUMMARY AND CONCLUSIONS

In this report we considered topics related to determining radar sensor bias. We presented
an algorithm that estimates the absolute bias of two sensors when the relative bias between
the sensors is given. The algorithm uses the relative bias, which is given in rectangular
coordinates, as a constraint. The absolute biases, in spherical coordinates, for the sensors are
obtained by the solution to an optimization problem that exploits the spherical-to-rectangular
coordinate conversion. We presented a reduced-state filter designed for performance with
sensor bias. The filter is reduced-state since it does not contain additional bias states. The
filter design is influenced by the filter in Mookerjee and Reifler [7] and may be viewed as a
dual design, in the control theory sense, to their filter [7].

A flow diagram for processing radar data with bias may contain these stages:

1. Estimate state with the o — § filter optimized for measurement bias, as presented in
Chapter 3.

2. For a multi-sensor problem, estimate the relative sensor bias using an optimized
algorithm such as in Brown, Weisman, and Brock [5].

3. Continue by estimating the absolute bias for each sensor using the algorithm presented
in Chapter 2.
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APPENDIX A:

TRANSFORMATION FROM ENU(1) TO ENU(2)
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In this appendix, we present the transformation from the ENU(1), East North Up, to the
ENU(2) coordinate systems. But first, consider the transformation from the Earth Centered
Inertial, denoted ECI, to ENU. Consider an ENU coordinate axis located at longitude-latitude
Q) — L and define the rotation matrix

1 0 0 cosf! 0 —sin() 010
TECIQENU = 0 cosL —sinlL 0 1 0 0 0 1
0 sinL cosL sin2 0 cosQ 1 00
—sin Q) cos 2 0
= | —sinLcosQ) —sinLsin() cosL

cos L cos () cosLsin) sinL

with Tenu2EcT = TJ'EC reENy- For position, we need to include a translation, so that for a
given position vector in ENU coordinates

cos L cos ()

—— cos L sin Q + Tenv2eciPEnu
1 —e’sin” L (1—62)sinL

Tee
Pgcor =

where r¢. is the earth’s equatorial radius and e is the earth’s eccentricity. For velocity, use the
rotation alone.

Let the ENU(1), ENU(2) coordinate system be located at longitude-latitude {4, L1} and
{Q4q, Lo} respectively. Next we consider our transformation going from {1, L1} to {Q2, Lo}.
The rotation part of this transformation can be represented by the matrix below (going from
ENU(1) to ENU(2)). There are three steps. First, the ENU(1) coordinates are rotated down
to the equator. Second, these coordinates are rotated along the equator by the longitude
difference. Third is the rotation up to the latitude of the ENU(2) system.

1 0 0 COS (QQ — Ql) 0 —sin (QQ — Ql)
TENU(1)2E'NU(2) = 0 cos L2 —sin L2 0 1 0
0 sinls cos Lo sin(Q2 — Q1) 0 cos(Qe — )
1 0 0

X | 0 cosLy sinlq
0 —sinl; cosly

cos (2 — Q) sin Ly sin (29 — Q)
= | —sinLgsin(Q2 — Q) cos Ly cos L + sin Ly sin Ly cos (Q2 — )
cos Losin (Q9 — 1) cos Ly sin Ly — cos Lo sin Ly cos (22 — )

—cos Ly sin (Q2 — Q)
cos Lo sin L — cos Ly sin Ly cos (23 — )
sin Ly sin Ly + cos Ly cos Ly cos (29 — 1)

(Note
cos (2 —Q) 0 —sin(Q2— )
0 1 0
sin (2 — Q1) 0 cos(Qy — Q)
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cos )1 cos{s +sin)ysin)s 0 — cos {2y sin sy + cos 25 sin
cos )y sin )y —coslosin€)y 0 cos 2y cos s + sin €2 sin 2

cosfly 0 —sin€)y cos€l; 0 sin{)y
= 0 1 0 0 1 0
sinf29 0 cos{)y —sin)y 0 cos{)

so that the rotation TNy (1)2ENT(2) 18 @ Totation from the first coordinates down to ECI and
then up to the second coordinates.) We have

TeENU@2)2ENUQ1) = TENU(1)2ENU(2)

The position vector from the ENU(1) to the ENU(2) coordinate axes (in ECI coordinates)
is

cos Lo cos )y cos L1 cos )y
cos Lo sin 2y cos Ly sin {4
(1 - 62) sin Lo (1 — 62) sin I

PpNu@)2ENU(2),ECT = Tee Tee
7 V1 —e2sin? Ly V1—e2sin’L;

and, in the other coordinates, this vector is

Peyvay2enve),envi) = Tecizenu@) PENU(1)2ENU2),BCT

The total position coordinate transformation, including translation, can be represented by

Ppnu@e) = —Penvazenu@),enve) + Tenva)2zenue) PEnu()

The total velocity coordinate transformation is given by the rotation alone.

A-4



NSWCDD/TR-12/555

APPENDIX B:

SOLUTION TO THE CUBIC EQUATION
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In this appendix, we present the solution to the cubic polynomial equation and apply the
solution to the cubic equation that arises from our tracking problem. But first, we consider
the stability of our filter. The closed loop state transition matrix is

1 T o l—a T
ve=e-xi=y 7] e |0 o)=[ 55 T
hence, the eigenvalues of ¢y, are

1 1
61:1—506—5 042—46

and ) 1
62:1—504—{—5\/042—45.

For the stability of the filter, we need the absolute value of e1, es less than one. If 8 < 0, no
matter what « is, at least one of e, e will have an absolute value of one or more; hence, a
requirement for the stability of the filter is 8 > 0. This is the same story if a < 0. If « > 2
then (1 — «/2) < —1 and the radical causes either the absolute value e; or ez to be one or
greater. Also, for this case, depending on f, if the radical is complex, both e; and es would
have absolute value greater than one. In summary, necessary conditions for stability are:

LO0<a<?2
ii. 0< .

Mentioned in Chapter 3 was the noise reduction factor, which is the ratio of the
steady-state position covariance and the measurement noise intensity; see Bar-Shalom, Li, and
Kirubarajan [B-1]. For this problem the noise reduction factor works out as «. For the filter
to produce noise reduction, which means the noise reduction factor must be less than 1, we
add the condition:

iii. a < 1.
The canonical form for the cubic equation is [B-2]
y* +py+q=0. (B-1)
While equation (B-1) seems to be less general than
Bra+bz4+c=0; (B-2)
it is not since (B-2) may be reduced to (B-1) using the transformation

y—%zz. (B-3)

Substituting (B-3) into (B-2), we obtain
(- a3 oo

B-3
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1 1 2 1 a
- <y3—ay2+a2y—a3> +a<y2—3ay+9a2> —|—b(y—§)+c

3 27
1 2 ab
3 2 3
= b— = L3 .
y+< 3a>y+<27a 3+c>
Letting
a* B-4
—bh— ,
p 3 (B-4)
and . b
2a a
- = = B-
¢= o — 3 te, (B-5)

we reduce (B-2) to (B-1).
Returning to (B-1), define

1 p? 1 p3 p
_ 3 _ [ R S _
_(w POt R T 2Tl +p< 3w)+q
1 p?
3
= — =0
YT 97wl +a
Multiplying through by w?, we get
6 s P
——=—=0. B-7
W+ qut - 2 (B-7)

Equation (B-7) is quadratic in w?, which has the solution (in terms of w?)

1 4p3
3 _ 2
=24 - e B-8
w S\t 5 (B-8)
Taking the cube root of (B-8) we get
I B 4 4p? (B-9)
T A R T )

The cube root is a triple values function and we use the root which results in the « satisfying
the three conditions mentioned in the top paragraphs. Back-substituting w into (B-6) to
obtain y, and the y into (B-3), we obtain z, the solution to our cubic equation (B-2).

Our cubic polynomial of interest is (3.92). Repeating,

p* (8aB — 8B +8a® —4a® +28% — af® — 4a?8) —8B° =0 . (B-10)

Equation (B-10) is a cubic polynomial equation in o and . We present the solutions for « in
terms of § and ( in terms of «. First, we solve § = 8 («), which is usually desired in practice.
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We rewrite (B-10) as

2

63+p2<(§—i>52+p2<1—a+o;>ﬁ+p2<O§—a2>:0. (B-11)

Equation (B-11) is in the form of (B-2), so we use (B-4) and (B-5) to reduce it into the form

of (B-1). We have
a? 1/ 5(a 1 2
=p(1l—a+—)|-= ——= B-12
= (1) 5 ((59) 12
2 gfa 1 5 1 4y (fa 1 a? 5 [ 9

(B-14)

and

with w given by (B-9), p given by (B-12), and by comparing (B-11) with (B-2)

a 1
a:p2<8—4> .

Equation (B-10) is a cubic in both a and . Having solved /3 in terms of a, we solve for a
in terms of 3, a = a (). Dividing (B-10) by —4p? we obtain

3 22122 263122—0
O[‘l—(ﬁ— )Oé +<4ﬂ—ﬁ>a+ ﬁ—gﬁ-’-ﬁ— .

We have ) )
p=(35-28) - 36~ (B-15)

and 2 1 1 31
QZE(B—2)3—§(5—2) <462—25>+<2p2—252+25> .

Referring to (B-14), we then find that

with w given by (B-9), p given by (B-15), and with

a=(8-2) .
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